SME
Utorok, 7. júl, 2020 | Meniny má OliverKrížovkyKrížovky
ČO NEVIETE O ČÍSLACH

Pí, e aj zlatý rez. Tri čudné čísla a čo o nich (asi) neviete

Aké číslo nedokážeme ani v súčasnosti vyrátať? A koľko peňazí vám dá banka, keby ste mohli získavať úroky nekonečne často? Spoznajte tri písmená, ktoré sú kľúčovými číslami.

Zlaté rezy.Zlaté rezy. (Zdroj: Eric S./Flickr/CC)

φ alebo zlatý rez

Ak by niekto napísal číslo zhruba 1,618033..., asi by ste to za príliš dôležité nepovažovali. Zrejme však zbystríte pri zmienke o takzvanom zlatom reze.

Jeho pôvod, presnejšie jeho poznanie by sme vystopovali až kdesi do gréckej antiky a pre západný svet ho znovu objavila talianska renesancia. Je to pomer, ktorý sa často vyskytuje v prírode a nám – aspoň v európskej tradícii – sa zdá krásny. Stačí sa pozrieť na komponovanie fotografií či obrazov.

To však platí nielen pre prírodu či naše vnímanie, no aj pre matematiku. Nájdete ho, napríklad, pri slávnej Fibonacciho postupnosti. Konkrétne platí, že pomer medzi dvomi číslami v tejto postupnosti (1,1,2,3,5,8,13,...) sa v limite blíži práve k zlatému rezu. A keďže pri mnoho veciach v prírode – napríklad pri počte okvetných lístkov kvetín v prírode – narazíte práve na takúto postupnosť, znovu ste pri „božskom“ čísle.

Skryť Vypnúť reklamu

Pre zlatý rez platí rovnica, že φ2= φ + 1. Vo svete obdĺžnikov zase to, že obdĺžnik so stranami v pomere zlatého rezu možno rozdeliť na štvorec a ďalší obdĺžnik so stranami v pomere zlatého rezu. A takto je možné postupovať donekonečna.

Načítavam video...

e alebo Eulerovo číslo

Hodnota ďalšieho zvláštneho písmenka vo svete čísel je zhruba 2,7182818... a prezýva sa niekedy aj Napierova konštanta či základ prirodzených logaritmov. A je to dôležitá konštanta, pretože „e“ je jedno z najdôležitejších čísel v matematike. Namiesto vcelku zložitých aplikácii je však extrémne zaujímavé zistiť, kde sa objaví.

Predstavte si, že si do banky vložíte euro. Ak máte stopercentný ročný úrok (niežeby taká banka jestvovala), po roku budete mať eurá dve – pretože 1x(1+1,00). Ak by sa ale úročilo každý polrok, tak z pôvodného eura budete mať na konci roka 2,25 eura – pretože 1x(1+1,00/2)x(1+1,00/2)=1x(1+1,00/2)2=2,25. Ak budete skracovať intervaly úročenia, postupne sa budete približovať k istému číslu. Ak by boli intervaly úročenia nekonečne malé, výsledkom by bolo práve Eulerovo číslo.

Skryť Vypnúť reklamu

Toto číslo sa prvý raz objavilo začiatkom 17. storočia v práci škótskeho matematika Johna Napiera. Presnejšie, konštanta sa tam neobjavila priamo – práca vtedy obsahovala skupiny logaritmov, ktoré boli vyrátané vďaka tejto konštante.

Predpokladá sa však, že samotné objavenie čísla možno pripísať Jacobovi zo slávnej rodiny Bernoulliovcov. A napokon (po rokoch, v ktorých sa konštanta označovala písmenkom „b“) prišiel v novembri v roku 1731 Leonhard Euler a zaviedol písmenko „e“.

Keby sme mali napísať, kde všade sa e používa, mohli by sme rovno napísať knihy. Ale nájdete to trebárs tu.

pí alebo Ludolfovo číslo

Keby sme chceli zistiť, kde sa prvý raz objavilo práve pí, asi by sme sa museli pozrieť veľmi hlboko do minulosti. Predpokladá sa totiž, že vedomosť o ňom mali už starovekí Egypťania, keďže toto číslo možno vysledovať pri ich pyramídach.

Skryť Vypnúť reklamu

Zároveň však platí, že sa Egypťania podobne ako Babylončania snažili k matematickej hodnote pí aspoň priblížiť (a to sa bavíme o období až niekedy dvetisíc rokov pred našim letopočtom). Bližšie sa zhruba o jeden a pol tisícročia neskôr dostali Indovia.

Čo by to však bolo za zásadné číslo matematiky, pri ktorom by sme nenarazili na antických Grékov. Napríklad Archimedes vymyslel spôsob (dnes by sme to nazvali algoritmus), ako sa k hodnote pí dosať. Používal vpísané a opísané geometrické útvary (začínal šesťuholníkmi a počet uhlov útvarov zdvojnásoboval) okolo kruhu, aby dokázal zistiť jeho obvod.

Tým sa dostávame otázke, prečo je pí vlastne také dôležité? Nuž, začnime tým, že v nejakom okamihu ľudia objavili koleso. A zrazu (dobre, zrejme to súviselo skôr s poľnohospodárstvom a daňami, no príbeh s kolesom je pekný) potrebovali zistiť, aký je obvod tohto kolesa. Ako to zistíte – nuž, môžete kolesom prejsť po zemi a následnú stopu odmerať. Lenže, zrazu sa dozviete, že výsledok je celkom čudný a ak máte jednotkový priemer kolesa... No, ale teraz to skúste urobiť iba s čistou matematikou bez kolies.

Skryť Vypnúť reklamu

Babylonci sa pokúšali nakresliť okolo kruhu štvorec a ďalší do kruhu vpísali. Následne merali ich obvody, zrátali ich a polovicu tohto čísla považovali za obvod kruhu. Nebola to príliš presná metóda, napokon, mnohouholníky Archimeda boli presnejšie.

Pri obsahoch zase Egypťania postupovali tak, že zistili obsah štvorca so stranou rovnou priemeru kruhu. A predpokladali, že obsah kruhu je o trochu menší – ani to nie je bohvieaký výsledok. Takže si napokon povedali, že obsah kruhu je rovný skôr štvorcu, ktorého strana má 8/9 priemeru kruhu. Dostali sa tak na 3,16 (Archimedes údajne určil pí až na 3,1418).

Dnes vieme, že tento pomer obvodu kruhu k jeho priemeru je iracionálne číslo a nedá sa teda určiť pomerom dvoch celých čísel. A tiež vieme, že presnú hodnotu tohto čísla nedokážeme nikdy zistiť, keďže desatinný rozvoj pí je nekonečný.

Skryť Vypnúť reklamu

Načítavam video...

Pod textom diskutuje aj autor článku.

Nabudúce sa pozrieme na niektoré zaujímavé čísla väčšie ako desať.

Hlavný zdroj: Klán, Peter: Čísla (Academia/Galileo 2014)

Skryť Vypnúť reklamu

Najčítanejšie na SME Tech

Skryť Vypnúť reklamu
Skryť Vypnúť reklamu

Téma: Čo neviete o číslach

Prečítajte si aj ďalšie články k téme
Skryť Vypnúť reklamu
Skryť Vypnúť reklamu

Hlavné správy zo Sme.sk

Cynická obluda

Krajčího dvojitá galiba

Fanatizmus a proputinovská užitočná idiocia sú ako sopel a kašeľ - takmer vždy sa u nositeľa vyskytujú zároveň.

Minúta po minúte: Kollára budú odvolávať, návrh podal on sám

Sme rodina avizuje, že v prípade odvolania Kollára odíde z vlády.

Predseda parlamentu Boris Kollár (Sme rodina).
Stĺpček šéfredaktorky Beaty Balogovej

Kollárovi prešlo všetko, nechápe prečo by nemal aj plagiát

Koná ako najhoršia politická sorta.

Beata Balogová, šefredaktorka denníka SME
PÍŠE PATRIK MÁJOVSKÝ

Manipulátor, plagiátor a kardiológ

Kollár si odkopíroval aj reči o rodine a srdci.

Predseda Národnej rady SR Boris Kollár počas brífingu ohľadom svojej diplomovej práce.

Neprehliadnite tiež

Vedci identifikovali drobného predka dinosaurov

Objavy naznačujú, že veľkým dinosaurom predchádzali menšie živočíchy.

Fosília Ida. Stará 47 miliónov rokov, veľká 53 centimetrov, zrejme v deviatom či desiatom mesiaci života.
Podcast Pravidelná dávka

Do biológie ukryli štyri bilióny dolárov

Bioinžinierstvo a syntetická biológia sú o ekonomickom prínose.

Podcast Klik

Klik: Čo by ste nikdy nemali napísať na Facebook

Ako sa ochrániť na sociálnych sieťach.

Podcast Klik

Vedci našli baktérie odolné voči antibiotikám aj chlóru v mestskej kanalizácii

K najhoršiemu by došlo, ak by sa voda z kanalizácie dostala do povrchovej vody.