Aká bola vaša cesta k matematike a k pochybnostiam, či si matematika môže byť istá sama sebou?
To sú dve rôzne otázky. Pre štúdium matematiky som sa rozhodol na gymnáziu, keď som si uvedomil, že matematiku sa vlastne nemusím učiť, presnejšie memorovať. Stačilo si osvojiť príslušné pojmy a pochopiť základné súvislosti medzi nimi – ostatné sa dalo vymyslieť. To mi vydržalo približne do druhého ročníka vysokoškolského štúdia. Potom to už bez učenia nešlo. Ale zistil som, že dosiahnuť niečo za cenu námahy prináša oveľa väčšie zadosťučinenie než ľahké úspechy.
Čo sa týka druhej otázky, žiadne zásadné pochybnosti o istote matematického poznania nemám. Knihu som nazval Ani matematika si nemôže byť istá sama sebou v snahe zvýšiť jej šance na trhu. Podtitul Úvahy o množinách, nekonečne, paradoxoch a Gödelových vetách vystihuje jej obsah lepšie než samotný titul. Nuž, bestseller sa z nej aj tak nestal.
Vo svojej knihe hovoríte aj o krízach, ku ktorým v matematike občas dochádza...
Krízy v základoch matematiky prichádzajú z času na čas v súvislosti s objavmi, ktoré sa nedarí spracovať v rámci dovtedy fungujúcich predstáv. V takých prelomových obdobiach sa mení i pohľad matematikov na predmet ich štúdia. Dejiny matematiky zaznamenali tri takéto krízy.
Aké?
Prvá súvisí s objavom nesúmerateľnosti strany a uhlopriečky štvorca a rovnako strany a uhlopriečky pravidelného päťuholníka v antickom Grécku. Pomer dĺžok týchto úsečiek sa totiž nedá vyjadriť ako pomer žiadnych dvoch celých čísel. To odporovalo pytagorejskému presvedčeniu, že všetko je číslo, teda, že všetky zákonitosti sveta možno vyjadriť práve pomocou takýchto pomerov.
Tento problém bol definitívne prekonaný až oveľa neskôr rozšírením oboru racionálnych čísel o iracionálne čísla, napríklad √2, √3, √5, 3√2, 3√4, π, e a pod.
Druhú krízu vyvolali neúspešné snahy vybudovať neprotirečivé zdôvodnenie diferenciálneho a integrálneho počtu v 17. až 19. storočí pomocou nekonečne veľkých a najmä nekonečne malých číselných veličín. Počas 19. storočia tieto veličiny postupne nahradila technika limít, ktorá napokon celkom prevládla.